51 research outputs found

    Traffic analysis in a smart city

    Get PDF
    Urbanization is accelerating at a high pace. This places new and critical issues on the transition towards smarter, efficient, livable as well as economically, socially and environmentally sustainable cities. Urban Mobility is one of the toughest challenges. In many cities, existing mobility systems are already inadequate, yet urbanization and increasing populations will increase mobility demand still further. Understanding traffic flows within an urban environment, studying similarities (or dissimilarity) among weekdays, finding the peaks within a day are the first steps towards understanding urban mobility. Following the implementation of a micro-simulation model in the city of Modena based on actual data from traffic sensors, a huge amount of information that describes daily traffic flows within the city were available. This paper reports an in-depth investigation of traffic flows in order to discover trends. Traffic analyzes to compare working days, weekends and to identify significant deviations are performed. Moreover, traffic flows estimations were studied during special days such as weather alert days or holidays to discover particular tendencies. This preliminary study allowed to identify the main critical points in the mobility of the city

    Real-Time Visual Analytics for Air Quality

    Get PDF
    Raise collective awareness about the daily levels of humans exposure to toxic chemicals in the air is of great significance in motivating citizen to act and embrace a more sustainable life style. For this reason, Public Administrations are involved in effectively monitoring urban air quality with high-resolution and provide understandable visualization of the air quality conditions in their cities. Moreover, collecting data for a long period can help to estimate the impact of the policies adopted to reduce air pollutant concentration in the air. The easiest and most cost-effective way to monitor air quality is by employing low-cost sensors distributed in urban areas. These sensors generate a real-time data stream that needs elaboration to generate adequate visualizations. The TRAFAIR Air Quality dashboard proposed in this paper is a web application to inform citizens and decision-makers on the current, past, and future air quality conditions of three European cities: Modena, Santiago de Compostela, and Zaragoza. Air quality data are multidimensional observations update in real-time. Moreover, each observation has both space and a time reference. Interpolation techniques are employed to generate space-continuous visualizations that estimate the concentration of the pollutants where sensors are not available. The TRAFAIR project consists of a chain of simulation models that estimates the levels of NO and NO2 for up to 2 days. Furthermore, new future air quality scenarios evaluating the impact on air quality according to changes in urban traffic can be explored. All these processes generate heterogeneous data: coming from different sources, some continuous and others discrete in the space-time domain, some historical and others in real-time. The dashboard provides a unique environment where all these data and the derived statistics can be observed and understood

    Anomaly Detection and Repairing for Improving Air Quality Monitoring

    No full text
    Clean air in cities improves our health and overall quality of life and helps fight climate change and preserve our environment. High-resolution measures of pollutants’ concentrations can support the identification of urban areas with poor air quality and raise citizens’ awareness while encouraging more sustainable behaviors. Recent advances in Internet of Things (IoT) technology have led to extensive use of low-cost air quality sensors for hyper-local air quality monitoring. As a result, public administrations and citizens increasingly rely on information obtained from sensors to make decisions in their daily lives and mitigate pollution effects. Unfortunately, in most sensing applications, sensors are known to be error-prone. Thanks to Artificial Intelligence (AI) technologies, it is possible to devise computationally efficient methods that can automatically pinpoint anomalies in those data streams in real time. In order to enhance the reliability of air quality sensing applications, we believe that it is highly important to set up a data-cleaning process. In this work, we propose AIrSense, a novel AI-based framework for obtaining reliable pollutant concentrations from raw data collected by a network of low-cost sensors. It enacts an anomaly detection and repairing procedure on raw measurements before applying the calibration model, which converts raw measurements to concentration measurements of gasses. There are very few studies of anomaly detection in raw air quality sensor data (millivolts). Our approach is the first that proposes to detect and repair anomalies in raw data before they are calibrated by considering the temporal sequence of the measurements and the correlations between different sensor features. If at least some previous measurements are available and not anomalous, it trains a model and uses the prediction to repair the observations; otherwise, it exploits the previous observation. Firstly, a majority voting system based on three different algorithms detects anomalies in raw data. Then, anomalies are repaired to avoid missing values in the measurement time series. In the end, the calibration model provides the pollutant concentrations. Experiments conducted on a real dataset of 12,000 observations produced by 12 low-cost sensors demonstrated the importance of the data-cleaning process in improving calibration algorithms’ performances
    • …
    corecore